Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Boreal forests of Alaska and Western Canada are experiencing rapid climate change characterized by higher temperatures, more extreme droughts, and changing disturbance regimes, resulting in forest mortality and composition changes. Mechanistic models are increasingly important for predicting future forest trends as the region experiences novel environmental change. Previously, many process-based models have generated starting conditions by ‘spinning up’ to equilibrium. However, setting appropriate initial conditions remains a persistent challenge in using mechanistic forest models, where stochastic events and latent parameters governing tree establishment have long-lasting impacts on simulation outcomes. Recent advances in remote sensing analysis provide information that can help address this issue. We updated an individual-based gap model, the University of Virginia Forest Model Enhanced (UVAFME), to include initial conditions derived from aerial and satellite imagery at two locations. Following these updates, material legacies (e.g. trees, seed banks, soil organic layer) allowed new forest types to persist in UVAFME simulations, landscape-level forest heterogeneity increased, and forest-wide biomass estimates increased. At both study sites, initialization from remotely sensed data had a strong impact on forest cover and volume. Climate change impacts were simulated decades earlier than when the model was ‘spun up’. In Alaska’s Tanana Valley State Forest, warmer climate scenarios drove deciduous expansion, increased drought stress, and resulted in a 28% decrease in overall biomass by 2100 between historical and high emissions climate scenarios. At a lowland site in Northern British Columbia, lodgepole pine(Pinus contorta)remained dominant and became more productive with exogenous climate forcing as temperature, nutrient, and flooding limitations decreased. These case studies demonstrate a new framework for forest modeling and emphasize the advantages of integrating remotely sensed data with mechanistic models, thereby laying groundwork for future research that explores near-term impacts of non-stationary ecological change.more » « less
-
Abstract Terrestrial, aquatic, and marine ecosystems regulate climate at local to global scales through exchanges of energy and matter with the atmosphere and assist with climate change mitigation through nature‐based climate solutions. Climate science is no longer a study of the physics of the atmosphere and oceans, but also the ecology of the biosphere. This is the promise of Earth system science: to transcend academic disciplines to enable study of the interacting physics, chemistry, and biology of the planet. However, long‐standing tension in protecting, restoring, and managing forest ecosystems to purposely improve climate evidences the difficulties of interdisciplinary science. For four centuries, forest management for climate betterment was argued, legislated, and ultimately dismissed, when nineteenth century atmospheric scientists narrowly defined climate science to the exclusion of ecology. Today's Earth system science, with its roots in global models of climate, unfolds in similar ways to the past. With Earth system models, geoscientists are again defining the ecology of the Earth system. Here we reframe Earth system science so that the biosphere and its ecology are equally integrated with the fluid Earth to enable Earth system prediction for planetary stewardship. Central to this is the need to overcome an intellectual heritage to the models that elevates geoscience and marginalizes ecology and local land knowledge. The call for kilometer‐scale atmospheric and ocean models, without concomitant scientific and computational investment in the land and biosphere, perpetuates the geophysical view of Earth and will not fully provide the comprehensive actionable information needed for a changing climate.more » « less
-
Abstract Climate change is driving substantial changes in North American boreal forests, including changes in productivity, mortality, recruitment, and biomass. Despite the importance for carbon budgets and informing management decisions, there is a lack of near‐term (5–30 year) forecasts of expected changes in aboveground biomass (AGB). In this study, we forecast AGB changes across the North American boreal forest using machine learning, repeat measurements from 25,000 forest inventory sites, and gridded geospatial datasets. We find that AGB change can be predicted up to 30 years into the future, and that training on sites across the entire domain allows accurate predictions even in regions with only a small amount of existing field data. While predicting AGB loss is less skillful than gains, using a multi‐model ensemble can improve the accuracy in detecting change direction to >90% for observed increases, and up to 70% for observed losses. Higher stem density, winter temperatures, and the presence of temperate tree species in forest plots were positively associated with AGB change, whereas greater initial biomass, continentality (difference between mean summer and winter temperatures), prevalence of black spruce (Picea mariana), summer precipitation, and early warning metrics from long‐term remote sensing time series were negatively associated with AGB change. Across the domain, we predict nondisturbance‐induced declines in AGB at 23% of sites by 2030. The approach developed here can be used to estimate near‐future forest biomass in boreal North America and inform relevant management decisions. Our study also highlights the power of machine learning multi‐model ensembles when trained on a large volume of forest inventory plots, which could be applied to other regions with adequate plot density and spatial coverage.more » « less
-
Abstract. Climate change and increased fire are eroding theresilience of boreal forests. This is problematic because boreal vegetationand the cold soils underneath store approximately 30 % of all terrestrialcarbon. Society urgently needs projections of where, when, and why borealforests are likely to change. Permafrost (i.e., subsurface material thatremains frozen for at least 2 consecutive years) and the thicksoil-surface organic layers (SOLs) that insulate permafrost are importantcontrols of boreal forest dynamics and carbon cycling. However, both arerarely included in process-based vegetation models used to simulate futureecosystem trajectories. To address this challenge, we developed acomputationally efficient permafrost and SOL module named the Permafrost andOrganic LayEr module for Forest Models (POLE-FM) that operates at finespatial (1 ha) and temporal (daily) resolutions. The module mechanisticallysimulates daily changes in depth to permafrost, annual SOL accumulation, andtheir complex effects on boreal forest structure and functions. We coupledthe module to an established forest landscape model, iLand, and benchmarkedthe model in interior Alaska at spatial scales of stands (1 ha) tolandscapes (61 000 ha) and over temporal scales of days to centuries. Thecoupled model generated intra- and inter-annual patterns of snowaccumulation and active layer depth (portion of soil column that thawsthroughout the year) generally consistent with independent observations in17 instrumented forest stands. The model also represented the distributionof near-surface permafrost presence in a topographically complex landscape.We simulated 39.3 % of forested area in the landscape as underlain bypermafrost, compared to the estimated 33.4 % from the benchmarkingproduct. We further determined that the model could accurately simulate mossbiomass, SOL accumulation, fire activity, tree species composition, andstand structure at the landscape scale. Modular and flexible representationsof key biophysical processes that underpin 21st-century ecologicalchange are an essential next step in vegetation simulation to reduceuncertainty in future projections and to support innovative environmentaldecision-making. We show that coupling a new permafrost and SOL module to anexisting forest landscape model increases the model's utility for projectingforest futures at high latitudes. Process-based models that representrelevant dynamics will catalyze opportunities to address previouslyintractable questions about boreal forest resilience, biogeochemicalcycling, and feedbacks to regional and global climate.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
Abstract Forest characteristics, structure, and dynamics within the North American boreal region are heavily influenced by wildfire intensity, severity, and frequency. Increasing temperatures are likely to result in drier conditions and longer fire seasons, potentially leading to more intense and frequent fires. However, an increase in deciduous forest cover is also predicted across the region, potentially decreasing flammability. In this study, we use an individual tree-based forest model to test bottom-up (i.e. fuels) vs top-down (i.e. climate) controls on fire activity and project future forest and wildfire dynamics. The University of Virginia Forest Model Enhanced is an individual tree-based forest model that has been successfully updated and validated within the North American boreal zone. We updated the model to better characterize fire ignition and behavior in relation to litter and fire weather conditions, allowing for further interactions between vegetation, soils, fire, and climate. Model output following updates showed good agreement with combustion observations at individual sites within boreal Alaska and western Canada. We then applied the updated model at sites within interior Alaska and the Northwest Territories to simulate wildfire and forest response to climate change under moderate (RCP 4.5) and extreme (RCP 8.5) scenarios. Results suggest that changing climate will act to decrease biomass and increase deciduous fraction in many regions of boreal North America. These changes are accompanied by decreases in fire probability and average fire intensity, despite fuel drying, indicating a negative feedback of fuel loading on wildfire. These simulations demonstrate the importance of dynamic fuels and dynamic vegetation in predicting future forest and wildfire conditions. The vegetation and wildfire changes predicted here have implications for large-scale changes in vegetation composition, biomass, and wildfire severity across boreal North America, potentially resulting in further feedbacks to regional and even global climate and carbon cycling.more » « less
-
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodologies to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC) are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (GATM) is computed from the annual changes in concentration. The global net uptake of CO2 by the ocean (SOCEAN, called the ocean sink) is estimated with global ocean biogeochemistry models and observation-based fCO2 products (fCO2 is the fugacity of CO2). The global net uptake of CO2 by the land (SLAND, called the land sink) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The sum of all sources and sinks results in the carbon budget imbalance (BIM), a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the year 2023, EFOS increased by 1.3 % relative to 2022, with fossil emissions at 10.1 ± 0.5 GtC yr−1 (10.3 ± 0.5 GtC yr−1 when the cement carbonation sink is not included), and ELUC was 1.0 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 ± 0.9 GtC yr−1 (40.6 ± 3.2 GtCO2 yr−1). Also, for 2023, GATM was 5.9 ± 0.2 GtC yr−1 (2.79 ± 0.1 ppm yr−1; ppm denotes parts per million), SOCEAN was 2.9 ± 0.4 GtC yr−1, and SLAND was 2.3 ± 1.0 GtC yr−1, with a near-zero BIM (−0.02 GtC yr−1). The global atmospheric CO2 concentration averaged over 2023 reached 419.31 ± 0.1 ppm. Preliminary data for 2024 suggest an increase in EFOS relative to 2023 of +0.8 % (−0.2 % to 1.7 %) globally and an atmospheric CO2 concentration increase by 2.87 ppm, reaching 422.45 ppm, 52 % above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959–2023, with a near-zero overall budget imbalance, although discrepancies of up to around 1 GtC yr−1 persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use change emissions, (2) low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the mean ocean sink. This living-data update documents changes in methods and datasets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle. The data presented in this work are available at https://doi.org/10.18160/GCP-2024 (Friedlingstein et al., 2024).more » « lessFree, publicly-accessible full text available March 14, 2026
An official website of the United States government
